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1 Unique factorization, gcd and lcm.

After the fundamental theorem of arithmetic we can write the decomposition
of an integer into primes in two ways. Firstly

n = p1p2...pr

where the primes are not necessarily distinct. E.g. 20 = 2× 2× 5. Alterna-
tively

n = pa1
1 pa2

2 ...pas
s

where the primes are distinct and the exponents ai ≥ 0 for all i. E.g. 20 =
22 × 5. It is important that we allow ai = 0 (which you may feel is strange,
since it says a prime is not in the decomposition and there are infinitely
many primes not in the decomposition), but it is useful when considering
two numbers simultaneously. E.g. if a = 20 and b = 15 then a = 22× 30× 51

while 15 = 20 × 31 × 51.

In general, if a, b and c are integers > 1 let p1, p2, ..., pn be all the primes
that divide abc. So we can write

a =
n∏

i=1

pai
i , b =

n∏
i=1

pbi
i and c =

n∏
i=1

pci
i ,

for some exponents ai, bi, ci ≥ 0 for 1 ≤ i ≤ n. Then ab = c if,and only if,
ai + bi = ci for all 1 ≤ i ≤ n. This is because, by unique factorization, the
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number of times a prime divides ab equals the number of times it divides c.
This leads to the following hopefully obvious conclusion,

a|c ⇔ ∃b ≥ 1 : ab = c

⇔ ∃bi ≥ 0 : ai + bi = ci for all 1 ≤ i ≤ n,

⇔ ai ≤ ci for all 1 ≤ i ≤ n.

Theorem 1 Let p1, p2, ..., pn be all the distinct primes that divide ab and
write

a =
n∏

i=1

pai
i and b =

n∏
i=1

pbi
i

for some ai, bi ≥ 0, 1 ≤ i ≤ n. Then

gcd (a, b) =
n∏

i=1

p
min(ai,bi)
i ,

and

lcm (a, b) =
n∏

i=1

p
min(ai,bi)
i .

Further
gcd (a, b)× lcm (a, b) = ab.

Proof If d = gcd (a, b) then d|a and d|b. Thus the primes dividing d must
divide both a and b, in particular they come from the list p1, p2, ..., pn. There-
fore

gcd (a, b) =
n∏

i=1

pdi
i

for some di ≥ 0 for 1 ≤ i ≤ n. From above d|a means that di ≤ ai while d|b
means di ≤ bi. These combine as di ≤ min (ai, bi) , for all 1 ≤ i ≤ n. But d is
the greatest of all common divisors so we take equality, i.e. di = min (ai, bi).

For the lowest common multiple, recall the

Definition 2 The lowest common multiple of integers a, b is the positive
integer f that satisfies

1) a|f, b|f,

2) if a|k, b|k then f |k.
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Note that ab is a multiple of both a and b and thus a common multiple.
By part (2) of the definition lcm (a, b) |ab. In particular the primes dividing
lcm (a, b) come from the list p1, p2, ..., pn. Therefore

lcm (a, b) =
n∏

i=1

pfi

i

for some fi ≥ 0 for 1 ≤ i ≤ n.

The condition that a| lcm (a, b) implies ai ≤ fi while b| lcm (a, b) implies
bi ≤ fi for 1 ≤ i ≤ n. These combine to give max (ai, bi) ≤ fi for 1 ≤ i ≤ n.
But lcm (a, b) is the least common multiple so we take fi = max (ai, bi) for
1 ≤ i ≤ n.

Finally, since for all x, y we have

min (x, y) + max (x, y) = x + y,

(student to check this), then

gcd (a, b)× lcm (a, b) =
n∏

i=1

p
min(ai,bi)
i

n∏
i=1

p
max(ai,bi)
i

=
n∏

i=1

p
min(ai,bi)+max(ai,bi)
i

=
n∏

i=1

pai+bi =
n∏

i=1

pai

n∏
i=1

pbi

= ab.

�

Example 3 Find gcd (235224, 63504) and lcm (235224, 63504) .

Solution.

a = 235224 = 2335112 and b = 63504 = 243472.

Then

gcd (235224, 63504) = 2min(3,4)3min(5,4)7min(0,2)11min(2,0)

= 233470110

= 648.
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And

lcm (235224, 63504) = 2max(3,4)3max(5,4)7max(0,2)11max(2,0)

= 243572112

= 23051952.

Corollary 4
gcd (a, b) = 1

if and only if none of the prime divisors of a divide b and vice-versa.

Aside You may feel inclined to use the prime factorization to find the greatest
common divisors of two numbers instead of Euclid’s algorithm. But since it
is extremely hard to find the prime factors of very large numbers this method
is of limited use.
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2 Sieve of Eratosthenes

All the numbers from 2 up to 100

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Delete multiples of 2 apart from 2 itself:

2 3 5 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47 49
51 53 55 57 59
61 63 65 67 69
71 73 75 77 79
81 83 85 87 89
91 93 95 97 99

Delete multiples of 3 apart from 3 itself:

2 3 5 7
11 13 17 19

23 25 29
31 35 37
41 43 47 49

53 55 59
61 65 67
71 73 77 79

83 85 89
91 95 97
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Delete multiples of 5 apart from 5 itself:

2 3 5 7
11 13 17 19

23 29
31 37
41 43 47 49

53 59
61 67
71 73 77 79

83 89
91 97

Delete multiples of 7 apart from 7 itself:

2 3 5 7
11 13 17 19

23 29
31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

The next number is 11 which is greater than
√

100 and so there are no
multiples of it less than 100 that haven’t already been deleted in earlier
stages. Thus we are left with the 25 primes <100.

3 Prime Numbers

For x > 0 let π (x) be the number of primes not exceeding x. So π (10) = 4,
π (100) = 25, (as seen from the application of the Sieve of Eratosthenes in
the appendix), π (1000) = 168 and π (5000) = 669. Also

π
(
1023

)
= 1, 925, 320, 391, 606, 803, 968, 923,

due to Tomás Oliveira e Silva, 2007. Is there a simple formula for π (x)?

6



Appendix week 11

Theorem 5 Prime Number Theorem (1896)

lim
x→∞

π (x)

x/ ln x
= 1.

This means that we can make∣∣∣∣ π (x)

x/ ln x
− 1

∣∣∣∣
as small as we like by taking x sufficiently large. This difference is < 0.054 if
x ≥ 109, is < 0.039 if x ≥ 1012 and is < 0.033 if x ≥ 1014. So, for very large
x the graph for π (x) lies close to that of x/ ln x.

Proof not given (until MATH31022 Analytic Number Theory).

On doing some calculations you might in fact think that x/ ln x is not a
very good approximation to π (x). If f (x) = x/ ln x then

f
(
1023

)
= 1, 888, 236, 877, 840, 225, 337, 613.6039952...

which seems quite a long way short of the true value of π (1023) above.

(See http://en.wikipedia.org/wiki/Prime-counting function for further de-
tails including a description of a better approximation to π (x).)

4 Example of use of unique factorization

Example 6 For all integers m ≥ 2 there is no rational solution to qm = 2.

Solution by contradiction. Assume that for some m ≥ 2 there exists a
rational q : qm = 2.

Write q = a/b with a, b ∈ Z, so we get am = 2bm.

Firstly, |b| ≥ 1 and so |am| = 2 |b|m ≥ 2. Thus |a| ≥ 2. Substitute back
in to get 2 |b|m = |a|m ≥ 2m, that is, |b|m ≥ 2m−1 ≥ 2 since m ≥ 2. Therefore
we have both |a| > 1 and |b| > 1. This means that both a and b can be
factored into primes.

Let p1, ..., pn be the primes dividing either a or b. We can then write

a =
n∏

i=1

pai
i and b =

n∏
i=1

pbi
i
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for exponents ai ≥ 0 and bi ≥ 0. Substitute into am = 2bm to get

n∏
i=1

pmai
i = 2

n∏
i=1

pmbi
i .

Since 2 appears in the factorisation on the Right Hand Side we have, by
unique factorisation that 2 must appear in the product on the Left Hand
Side. Without loss of generalisation assume p1 = 2 in which case a1 ≥ 1. We
then get

2ma1

n∏
i=2

pmai
i = 21+mb1

n∏
i=2

pmbi
i .

By unique factorization the number of 2’s on both sides are identical so
ma1 = 1 + mb1, i.e. m (a1 − b1) = 1 in which case m divides 1. This
contradicts m ≥ 2 and so the assumption is false and thus for no m ≥ 2 can
we find a rational solution of qm = 2. �

One of the first proofs you examine at University is to prove that
√

2 is
irrational, i.e. no rational solutions of q2 = 2. So here we have extended this
result.

5 What are φ (100) and φ (1000)?

Lemma 7 For m ≥ 2

φ (10m) = 10φ
(
10m−1

)
.

Proof Note first that by looking at the prime divisors of n and a we have
gcd (n, am) = 1 ⇔ gcd (n, a) = 1. With a = 10 we deduce that

φ (10m) = |{1 ≤ n ≤ 10m, gcd (n, 10) = 1}| . (1)

Simply write every 1 ≤ n ≤ 10m as r + s10m−1 with 1 ≤ r ≤ 10m−1 and
0 ≤ s ≤ 9. Then

gcd (n, 10) = 1 ⇔ gcd
(
r + s10m−1, 10

)
= 1

⇔ gcd (r, 10) = 1.

Hence

φ (10m) =
∣∣{0 ≤ r ≤ 10m−1, 0 ≤ s ≤ 9 : gcd (r, 10) = 1

}∣∣
= 10×

∣∣{0 ≤ r ≤ 10m−1 : gcd (r, 10) = 1
}∣∣

since there are 10 choices for s,

= 10× φ
(
10m−1

)
,
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by (1) with m replaced by m− 1. �

Repeated use of the Lemma gives

φ (10m) = 10m−1φ (10) = 4× 10m−1.

So φ (100) = 40 and φ (1000) = 400.

Example 8 Find the last three digits of 131010.

Solution We need calculate 131010 mod 1000. From above φ (1000) = 10φ (100) =
400, and so 13400 ≡ 1 mod 1000. Thus

131010 ≡
(
13400

)2
13210 ≡ 13210 mod 1000.

Repeated squaring gives

132 = 169,

134 ≡ 1692 = 28561 ≡ 561 mod 1000,

138 ≡ 5612 = 314721 ≡ 721 mod 1000,

1316 ≡ 7212 = 519841 ≡ 841 mod 1000,

1332 ≡ 8412 = 707281 ≡ 281 mod 1000,

1364 ≡ 2812 = 78961 ≡ 961 mod 1000,

13128 ≡ 9612 = 923521 ≡ 521 mod 1000.

Combine

13210 = 13128 × 1364 × 1316 × 132

≡ 521× 961× 841× 169

= 500681× 142129

≡ 681× 129

= 87849

≡ 849 mod 1000.

Hence the last 3 digits of 131010 are 849. �
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6 If gcd (r, n) = 1 and gcd (a, n) = 1 then gcd (ar, n) = 1.

The following result was used implicitly in a proof in the lectures, perhaps
you didn’t notice. If so, look back to see where it was used. The proof of
the lemma can be based on the fact that the gcd is 1 if the integers have no
prime divisors in common. Here we will base the proof on the earlier result
that the gcd is 1 if there exists a linear combination of the integers which
equals 1.

Lemma 9 If gcd (r, n) = 1 and gcd (a, n) = 1 then gcd (ar, n) = 1.

Proof An earlier result on coprime integers stated that if gcd (r, n) = 1 and
gcd (a, n) = 1 then ∃k, `, s, t ∈ Z, for which

kr + `n = 1 and sa + tn = 1.

Rearrange as kr = 1− `n, sa = 1− tn, multiply together and rearrange as

(ks) ra + (` + t− `tn) n = 1.

Since we have a linear combination of ra and n equaling 1 we deduce that
gcd (ra, n) = 1. �

7 φ (mn) = φ (m) φ (n)

We now give a rather long proof concerning the Euler phi function on prod-
ucts. A shorter proof will be given in MATH31022.

Theorem 10 If gcd (m,n) = 1 then φ (mn) = φ (m) φ (n).

Proof Let

R = {r1, r2, ..., rφ(m)} = {1 ≤ r ≤ m : gcd (r, m) = 1}

and
S = {s1, s2, ..., sφ(n)} = {1 ≤ s ≤ n : gcd (s, n) = 1} ,

be the reduced residue systems for the respective moduli m and n.

We are to show that the set of φ(m)φ(n) integers:

T = {nr + ms : r ∈ R, s ∈ S}

is a reduced residue system for modulus mn.
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Note that T can be written as an array

nr1 + ms1 nr1 + ms2 nr1 + ms2 · · · · · · nr1 + msφ(n)

nr2 + ms1 nr2 + ms2
...

nr3 + ms1
...

...
...

...
...

nrφ(m) + ms1 · · · · · · · · · · · · nrφ(m) + msφ(n)

and we see φ (m) φ (n) terms in this array.

We will establish the following:

• Each integer in T is co-prime to mn;

• No two integers in T are congruent modulo mn;

• Each integer co-prime to mn is congruent modulo mn to one of these
integers in T .

We prove each in turn:

1. Assume for contradiction that there exists an element of T not co-prime
to mn, so there exist r ∈ R, s ∈ S such that gcd (nr + ms,mn) > 1.

Suppose p is a prime divisor of this gcd (nr + ms,mn). Then p| (nr + ms)
and p|mn.

As p divides mn but gcd (m, n) = 1 then p either divides m or n but
not both.

Suppose WLOG that p|m.

Then p|m and p| (nr + ms) which together imply p|nr. But p either
divides m or n but not both so p|m means p - n. Combining p|nr and
p - n gives us p|r.

But now we have both p|m and p|r, and so p| gcd (r, m), which contra-
dicts gcd (r, m) = 1.

Similarly if p|n we get a contradiction with gcd (s, n) = 1.

So there is no prime divisor of gcd (nr + ms,mn) and hence gcd (nr + ms,mn) =
1. Thus all elements of T are co-prime to mn.
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2. Assume for contradiction that two integers in T are congruent modulo
mn.

Thus there exist (r, s) , (r′, s′) ∈ R×S, with nr+ms ≡ nr′+ms′(mod mn)
and (r, s) 6= (r′, s′).

The congruence nr + ms ≡ nr′ + ms′(mod mn) rearranges as

n(r − r′) + m(s− s′) = kmn

for some k ∈ Z. As m divides two of these terms it must divide the
third, so m|n(r − r′).

By the assumption in the Theorem, gcd (m, n) = 1 which with m|n(r−
r′) implies m|(r − r′), or r ≡ r′(mod m).

Yet r and r′ are part of the same reduced residue system modulo m,
so r = r′.

Similarly, from looking at n we get s = s′.

Thus (r, s) = (r′, s′), contradicting the (r, s) 6= (r′, s′) above.

Hence distinct elements of T cannot be congruent modulo mn.

3. Let k ∈ Z : gcd (k, mn) = 1. We wish to show that k is congruent to
some element of T modulo mn.

Since gcd (m,n) = 1 and 1|k we can use Euclid’s Algorithm say, to
write k = nr′ + ms′ for some r′, s′ ∈ Z.

Suppose that r′ is not coprime to m, i.e. gcd (r′, m) > 1. There would
then exist some prime number p such that p|m and p|r′.
Such a prime would be a common divisor of both k = nr′ + ms′ and
mn, contradicting gcd (k,mn) = 1.

Hence gcd (r′, m) = 1 and so r′ is congruent modulo m to one of the
integers in R.

By the same argument, gcd (s′, n) = 1 and so s′ is congruent modulo n
to one of the integers in S.

Writing r′ = r + am, s′ = s + bn with r ∈ R, s ∈ S we have

k = nr′ + ms′ = nr + ms + mn(a + b) ≡ nr + ms mod mn

and nr + ms ∈ T .
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Further examples of the use of Euler’s and Fermat’s
Theorems.

Example 11 Show that 21194 + 1 is divisible by 65.

Solution We need show that 65| (21194 + 1). Since 65 = 5×13 we need show
that 5| (21194 + 1) and 13| (21194 + 1).

First, 5 is prime so by Fermat’s Little Theorem we have 24 ≡ 1 mod 5.
Hence

21194 + 1 =
(
24
)298

22 + 1 ≡ 1298 × 4 + 1

= 5 ≡ 0 mod 5.

Next, 13 is prime so again by Fermat’s Little Theorem we have 212 ≡
1 mod 13. Hence

21194 + 1 =
(
212
)99

26 + 1 ≡ 199 × 64 + 1

= 65 ≡ 0 mod 13.

Combining these we get the required result. �

Example 12 Is 221 prime?

Solution Fermat’s Little Theorem tells us that If 221 is prime then 2220 ≡
1 mod 221. Note that

220 = 128 + 64 + 16 + 8 + 4

= 27 + 26 + 24 + 23 + 22.

Look at powers of 2 modulo 221.

n 22n
=
(
22n−1

)2

mod 221

0 2

1 22 = 4

2 42 = 16

3 162 = 256 ≡ 35

4 352 = 1225 ≡ 120 ≡ −101

5 (−101)2 = 10201 ≡ 35

6 352 ≡ −101

7 (−101)2 ≡ 35.
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So

2220 = 227

226

224

223

222

≡ 35× (−101)× (−101)× 35× 16

≡ 220× 220× 16

≡ 16 mod 221.

Since 2220 6≡ 1 mod 221 we deduce that 221 is not prime. �

Example 13 You now notice that 221 is composite and in fact 221 = 17×
13. Use Fermat’s Little Theorem, and not the method of successive
squaring modulo 221, to check that 2220 ≡ 16 mod 221.

Solution. If x ≡ 2220 mod (17× 13) then

x ≡ 2220 mod 17 and x ≡ 2220 mod 13.

By Fermat’s Little Theorem we have 216 ≡ 1 mod 17 so

2220 = 213×16+12 ≡ 212 ≡
(
24
)3

≡ (−1)3 ≡ −1 ≡ 16 mod 17.

Similarly 212 ≡ 1 mod 13 so

2220 = 218×12+4 ≡ 24 = 16 ≡ 3 mod 13.

Thus our two equations become

x ≡ 16 mod 17 and x ≡ 3 mod 13

Such a system was solved in the Appendix to Chapter 3, using the Chinese
Remainder Theorem, where we found x ≡ 16 mod 221. �

Example 14 Solve x22 + x11 ≡ 2 mod 11.

Solution Any solution must have gcd (x, 11) = 1 and so, by By Fermat’s
Little Theorem, x10 ≡ 1 mod 11. Thus

x22 + x11 ≡ x2 + x

≡ x2 + 12x on adding 11 to make the coefficient even,

≡ (x + 6)2 − 36 mod 11,
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by completing the square. Thus we need only solve (x + 6)2−36 ≡ 2 mod 11,
i.e. (x + 6)2 ≡ 5 mod 11. From the table

y y2 mod 11

1 1

2 4

3 9

4 5

5 3

we see that y2 ≡ 5 mod 11 iff y ≡ 4 or −4 mod 11. Thus we get two solutions
to our congruence of x + 6 ≡ 4 mod 11 and x + 6 ≡ −4 mod 11, i.e. x ≡ 1 or
9 mod 11. �

Example 15 Show that there are no integer solutions (x, y) to

x12 − 11x6y5 + y10 ≡ 8.

Solution We assume for a contradiction that there are integer solutions.
When we look at this modulo 11 they will remain solutions.

There are three cases.

Firstly, it maybe that 11|y in which case the equation becomes x12 ≡
8 mod 11. For any solution of this we must have gcd (x, 11) = 1 so, again by
Fermat’s Theorem, x10 ≡ 1 mod 11 and so we get x2 ≡ 8 mod 11. From the
table above we see this has no solutions.

Secondly, 11 - y and 11|x when the equation becomes y10 ≡ 8 mod 11.
But Fermat’s Little Theorem gives y10 ≡ 1 mod 11. Thus there are no solu-
tions.

Finally, 11 - y and 11 - x. So Fermat’s Theorem again gives both
x10, y10 ≡ 1 mod 11. Thus

x12 − 11x6y5 + y10 ≡ x2 + 1 mod 11,

and so we are looking for solutions to x2 ≡ 7 mod 11. Again from the table
we see this has no solution.

In all cases our equation has no solutions modulo 11. This contradiction
means our original equation has no integer solutions. �

In the MATH10101 2008 exam we find
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Example 16 Show that there are no integer solutions (x, y) to

7x2 − 35xy + 5y14 = 88.

Solution Left to student but, for a hint, look at this modulo 7.
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2 Wilson’s Theorem.

Recall that

Z∗m = {[r]m : 1 ≤ r ≤ m, gcd (r, m) = 1}

= {[r]m : 1 ≤ r ≤ m, ∃ [x]m ∈ Zm : [r]m [x]m = [1]m} .

Question What 1 ≤ r ≤ m are self-inverse modulo m, i.e. for which we can
we take [x]m = [r]m in [r]m [x]m = [1]m? In other words, for which 1 ≤ r ≤ m

do we have r2 ≡ 1 mod m?

Answer given here only for m = p, prime.

Theorem 17 x2 ≡ 1 mod p if, and only if, x ≡ 1 or −1 mod p.

Proof

x2 ≡ 1 mod p ⇔ p|
(
x2 − 1

)
⇔ p| (x− 1) (x + 1)

⇔ p| (x− 1) or p| (x + 1) since p prime

⇔ x ≡ 1 mod p or x ≡ −1 mod p.

�

Thus the only self-inverses in Z∗p are [1]p and [p− 1]p. As a corollary of
this we have

Theorem 18 Wilson’s Theorem. If p is prime then

(p− 1)! ≡ −1 mod p.

Proof p.291. Take the product of all the classes in Z∗p:∏
1≤r≤p−1
gcd(r,p)=1

[r]p .

Rearrange, pairing up a class with its inverse, leaving [1]p and [p− 1]p
unpaired. So the product becomes

[1]p

(∏
pairs

[r]p [r]−1
p

)
[p− 1]p = [p− 1]p .
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Thus ∏
1≤r≤p−1
gcd(r,p)=1

[r]p = [p− 1]p ,

which is equivalent to the stated result. �

Example 19 Calculate 20! mod 23.

Solution 23 is a prime so Wilson’s Theorem gives 22! ≡ −1 mod 23. But

22! = 22× 21× 20! ≡ (−1)× (−2)× 20!

≡ 2× 20! mod 23.

By observation 12 is the inverse of 2 modulo 23 so

20! ≡ (12× 2)× 20! = 12× (2× 20!)

≡ 12× 22!from above,

≡ −12 from 22! ≡ −1 mod 23,

≡ 11 mod 12.
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